
THE
PARALLEL
BUS

44

-<-DATA-

-ADDRESS-

(like BASIC) that uses floating point
routines.

Since most external devices are
essentially I/0 peripherals, these
restrictions should not create many
programming problems.

The first 26 bytes of ROM contain
a data table (Figure 3). This is a
handler table which has the same for
mat as the other OS vector tables.
Note that some of the data is optional.
The required data consists of ID bytes
used by the Generic Handler to
validate the presence of a parallel
device, and JUMP vectors to device
functions.

During a coldstart, just before at-

55296

55295

54784 $D600

tempting to initialize a cartridge, the
OS will poll for parallel devices. If the
ID bytes are correct , the OS will ex
ecute the JMP to the INIT routine at
55321 ($D819) through 55323
($D81B). This routine must put the
address of the Generic Handler
(58511, or $E48F) into the OS handler
table (HATABS) along with the device
name (T:, for example).

That done, your routine sets its
select bit in the Device Mask, per
forms any device-specific initializa
tions and ends with an RTS
instruction.

That's really all it takes to let the OS
"talk" to your device. Of course, there

are the low-level device drivers to
consider, but we'll examine them in
a later article. For now, remember that
the OS simply needs to know that
your device exists (have its bit set in
the Device Mask) and to have the
Generic Handler's address in HATABS
(Figure 4).

The OS can handle up to eight
devices on the PBI. The OS selects a
device by setting the appropriate bit
in the Hardware Select register,
located at 53759 ($D1FF). BIT 0

selects DEVICE 0, BIT 1 selects
DEVICE 1, and so on.

Just like the other registers in the
computer, this one has a shadow loca-

53759 $DIFF SELECT REGISTER

46

53758 $DIFE

53504 $DIOO

584 $0248 SELECT SHADOW

583 $0247 DEVICE MASK

, Figure 2.

Parallel Device Memory Map
--"---�--�------"'--'""""'"""'-'-� . '

DEVICE

REGISTERS

ANTIC, The ATARI Resource

tion. The computer uses shadow
registers to update the values in its
hardware registers. These values are
updated 30 times per second. The
Hardware Select register's shadow
location is at 583 ($0247).

SELECTING DEVICES

Before selecting a device, the OS looks
at the Device Mask (location 583,
$0247) to see if such a device really
exists. Recall that this was the bit set
by the initialization routine.

Parameters are passed between the
OS and the device using the A, X and
Y registers plus the Page Zero I/0 Con
trol Block (IOCB).

The carry flag tells the OS whether
or not the device performed its re
quested function. The device sets the
flag when it has performed its func- .
tion. Otherwise, the carry flag is left
RESET (0).

The A register passes a data byte, the
X register contains the index to the
originating device's IOCB, and the Y
register contains a Device Status byte.
This is the same as any other Central
1/0 (CIO) operation.

By the way, this is a good place to
mention that Atari 's Technical
Reference Notes (C016555 Rev. A) are
worth their weight in system errors.
The basic operation of CIO, IOCB's,
Dev.ice Status codes and the like are
all presented concisely. If you are

continued on page 75

January 1985 47

THE PARALLEL BUS REVEALED

continued from page 47

serious about writing professional

level software or designing any kind
of hardware for the Atari computer,
this manual is a must. As we go along,
I'll briefly explain the concepts you
need for these articles, but these ex

planations are not offered as a substi
tute for the Tech Reference Notes.

SUMMING UP

So far we've learned: The OS contains
a Generic Handler for parallel devices.
It selects one of up to eight devices

January 1985

through a hardware register and keeps
track of it through a shadow register.
The parallel device has a ROM con

taining low-level driver vectors (and,
perhaps, the drivers themselves) and

an INIT routine. During coldstart, the
OS will run the INIT routine and the
device will declare its existence by
writing its bit into the Device Mask
and putting its name, along with the
Generic Handler's address into
HATABS. In operation, the device and
the OS communicate through the
6502's A, X, and Y registers plus the
Page Zero IOCB. The parallel device
cannot use OS Floating Point routines

because the device's ROM is
mapped into those same locations.

Not too hard, huh? Next month
we'll look at hardware requirements,
and after that, we'll work up an ex
ample and look at interrupts. In the
meantin1e, try to resist the urge to tear
off that little cover. We'll explain how
to do it safely in the next Antic.

Earl Rice held a number of high-level
technical positions at Atari, in
cluding head of users group support.
His last post there was project
leader of the projected top-of-t!
Je-line 1450XL computer. �

75

For the first time, advanced users of

the Atari 800XL and 600XL learn

how it's possible to connect

peripherals to the fast, powerful

Parallel Bus Interface. Part 2 of a

4-part series.

Last month we looked at the general
operation of the Parallel Bus Interface
(PBI) emphasizing software concepts.
This month, we'll look at the hitd
ware concepts involved in making an
external device work via the parallel
bus.

Figure I shows the basic re
quirements for a simple serial 1/0
function such as an RS-232 board.
The serial 1/0 device can be an inte
grated circuit that looks like a set of
registers to the computer. The decode
logic selects the device when the
assigned PBI addresses are presented
on the address bus.

Beyond that, the computer needs
to be able to read and write data to
the device and respond to its requests
for service. That's what the Read/
Write and Interrupt Request lines are
for.

When the computer wants to talk
to a parallel bus peripheral, it enables
the decode logic with a signal called
External Enable. The decode logic
decides whether the address on the
bus is for the device or for the 2K
ROM.

If it's for the ROM, the decode logic
returns a Math Pack Disable signal to
the computer so that internal ROM
won't contend with the 2K ROM for
the data bus.

68

Figure 2 shows the approximate
timing of the Exter nal Enable
(EXTENB) and Math Pack Disable
(MPD) signals.

Figure 3 is a more detailed
schematic of the hardware example.
This is still not the complete design,
but it serves to illustrate the concepts
some more.

The decode logic does several
things:
• Decodes the $D8XX-$DFXX

block to enable the 2K ROM.
• Decodes the DlXX block for

device registers.
• Decodes the address $XXFF so

the computer can select the
Device Enable latch at $DlFF.
This latcb represents the select
bit in the Device Select register
(DEVSEL).

In Figure 3, the latch is tied to the
data Oline (for device 0). But it could
be tied to another line to make the
device respond to a different ID num
ber-such as bit 3 for device 3. For
simplicity, the latch is a write-only bit.
When we expand to a full design,
we'll see how to make a readable
register. We would need to do that to
make the peripheral available to an in
terrupt service routine.

The Device Enable latch must be set
to allow the computer to address the
2K ROM or the device registers. Its
output is also gated with the 2K ROM
select line to send the MPD signal to
the computer. The Device Enable

. latch is set by writing a 1 to $DIFF.
It is reset by writing a O to $DIFF.

Earl Rice was head of users group

support at Atari before moving on

to be project leader of the now

cancelled 1450XL computer.
continued on page 70

ANTIC, The Atari Resource

the toolbox

SUMMARY

The basic concept isn't hard. The

external hardware is enabled by

EXTENB. It must decode the 2K ROM

space, device registers, and Device

Select register. When the 2K ROM is

selected, it must return a Math Pack

Disable signal to the computer. If the

device is interrupt driven, it must

supply an Interrupt Request(IRQ) to

let the computer know it wants to be

serviced. In that event it will also need

to supply an IRQ ID number to the

computer.

Simple? Sure is ... At least at the

conceptual level. It gets a little more

involved when we design the decoder

and have to deal with timing. We'll do

that next month. In the meantime,

here's some additional information to

help you understand the diagrams:

READING THE DIAGRAMS

Some of the signal names in Figure

3 have a bar over them. That means

the signal's active state is low (binary

0). The little circles on the signal lines

next to some of the symbols mean the

same thing. A dot at the intersection

of two lines means they are con-

70

DATA

D
E
C

0
D

,. E

ADDRESS

EXT. ENABLE -tl--.........J

L

0
G
I

C

MATH PACK DISABLE --1------'

SERIAL
t----· DEVICE 1/0

RE,<\,D/WRITE -11----------'
INTERRUPT REQ --1-----------'

Figure 1.

Serial Interface Block Diagram

nected. If they cross without a dot,

they aren't connected. The wide

arrows indicate multiple signal lines.

The numbers inside the arrows tell

you which signals are involved. For

example, the arrow with AO-All

means the address lines for address bit

0 through address bit 11 all go to the

2K ROM. Only address bits AO-A7

go to the $XXFF decoder and the

device registers, however.

Figure 4 shows the pin numbers for

Cycle time = 558 ns

!li

422ns

486ns

-

-

Figure 2.

CPU-External Device Timing

the PBI signals. It also shows how the

pins are numbered on the printed cir

cuit connector at the back of your

SOOXL computer. Imagine you are

looking into the open connector slot.

CAUTION: Unplug your computer

before removing the cover over the

slot. Be very careful not to short the

connector pins. Before touching a

connector, be sure to discharge any

static charge you may have built up

by touching a grounded conducting

I
CPU

11 I

�
l

l f
EXTERN>'\L
DEVICE

m
..

ANTIC, The Atari Resource

- the toolbox

IRQ ----"'
35

'-----------------------,

M� ----4�3�-�
'-....t------�·

EXTEND
38

A8-A1S

D0·D7

A0A11 A0A7

R;W

01)()(

"""

Figure 3.

Simplified Serial Interface Schematic

object (such as a cold water pipe).
STATIC CHARGES CAN DESTROY

INTEGRATED CIR CUITS! BE

CAIWFUL!

Next month, we'll look at a serious
design for a sort of baby 850 Inter
face-a serial 1/0 device useable for
driving modems and such.

Pin 1 P.C. Connector

i�,��11�11�ii�fi85!;asas mQ �& n;lii1
'---------�'-----j � Q �� ��� V

ADDRESS LINES DATA LINES cw:: ,;,: � � x w
(AO·A 15) (D0•07)

Figure 4.

Parallel Bus Pinout

February 1985

Pin 49

..

SERIAL 1/0

DEVICE ENABLE
LATCH

71

the toolbox

PARALLEL
BUS REVEALED
Part 111: Building the serial i/o board

In Part Three of this important four

part series, we're ready to build a

serial I/0 board to take advantage

of the 100,000 bytes per second data

transfer speed of the Parallel Bus

Interface on the Atari XL computers.

In the first two parts of this series, we
learned the basic concepts of the Atari

Parallel Bus Interface. This month,
we'll start the actual design of a serial

I/0 device for the PBI. We'll choose
our devices and set up the logic to
allow the computer to talk to the 2K
ROM or the USA RT that we'll use for
1/0. Next month, we'll design address
decoders and put software into the
ROM to make things work.

Figure 1 is a block diagram of the
devices we'll work with this month.
Notice that the signals coming into
the select logic are the same ones we

invented on our block diagram last
month. The exception is RST which

comes directly from the PBI connec
tor. The 2K ROM is a 2716, available
from almost any surplus house. Be
sure to get the 350ns version or it will
be too slow for your computer.

The USART and Baud Rate Gener
ator are from Radio Shack. See the
parts list for catalog numbers. I picked
this USART because it is readily
available. It is also simple to design
with because it has only four registers

March 1985

by EARL RICE

to deal with, and all are brought out
to IC pins. That means we can hard
wire some functions and save writing
unnecessary software. Next month
we'll explain how you can make the
circuit more programmable if you
prefer to.

For this example, however, we'll

hard-wire the control register to give
us 300 baud, 7 data bits, no stop bits

and no parity. Figure 3 is a descrip
tion of USART pin functions and has
the information you need to change
the data format . Figure 4 and its
associated table show how to change
baud rate. Note that the Baud Rate
Generator has to run at 16 times the
baud rate you want from the USA RT

The select logic bears some discus

sion. Because PBI timing require
ments are tight, we need to use fast
logic chips to be sure things work. To
make matters worse, the PBI can elec
trically drive only one low power
TTL load. When we decode ad
dresses, we'll either need to tie two

gate inputs to some lines and overload
them, or put a low power buffer on
the line and add an extra gate delay
to our circuit. Neither alternative is
very attractive.

Fortunately, there is a logic family
available that combines the loading
characteristics of CMOS with the
speed of Schottky TTL. This combin
ation of high speed with virtually no
DC load on the PBI lines is just what

we are looking for. The logic family
is the 74HCTXX series. These are the
parts to use here. They are exactly
function and pin compatible with
TTL.

Be sure to get 74HCT parts and not
74HC parts. The HCT series is a little
scarce on the hobby market, but they
are available. I got mine at JDR
Microdevices in San Jose, California.

Figure 2 is a schematic diagram of

our serial 1/0 device. Notice that the
address lines to the 2716 ROM are left
off. This is to avoid clutter. We'll put
them in next month when we do ad
dress decoding. IC 's 4 and 5, the
NAND and NOR gates, are the select
logic.

The 2K ROM is selected when the

signal from the DEVICE ENABLE
LATCH is LOW AND D8:XX-DFXX is
LOW. Follow the path through the
two NOR gates. You'll notice that the
second one is used as an inverter.
LOWs at both pins 4 and 6 produce
a LOW at pin 13, giving CHIP SELECT

(CS) to the ROM.
This doesn't allow the ROM to be

read, however, because its P OWER
DOWN (PD) line has to be brought
LOW to enable the ROM outputs. The
R/W signal does that every READ
cycle. When it brings pin 9 of IC-4 HI,
pin 10 goes LOW, enabling the ROM
outputs. When both CS and PD are
LOW, the ROM is on the bus.

continued on next page

69

the toolbox

We use R/W for the PD signal
because its state is set at the beginning
of the 6502 machine cycle, and the
PD input takes about 250ns to work.
If we waited for address decoding, a

slow ROM might not come on quick

ly enough. CS operates in less than

30ns, so there's plenty of time avail
able to wait for decoding and device
enable to happen.

The USART is set up to operate as
a single read or write register. Any ad
dress from $D100 to $D1FF will en

able the USART. This wouldn't do at
all if we wanted to program its con
trol functions or read its status register.

But we've hard-wired those functions

for our example, so it really doesn't

matter. Besides, it saves parts cost.
Next month we'll deal with

embellishments. For now, writing to

any address in the $D1XX range puts
a character into the transmit register

and the USART will send it. Reading

any address in that range reads the last
character received by the USART. The
DS1-DS8 pins go to the transmit

register, and the RD1-RD8 pins go to
the receive register. We've wired them

together and connected them to the
data bus so the computer can write

and read USART data.

When the signal from the DEVICE
ENABLE LATCH is LOW at pin 3 of
IC-4 A ND the $D1XX signal is LOW

at pin 3 of IC-4, its output goes HIGH
and enables the read-write gates from
IC-5. Then if R/W is HIGH at pin 1

of IC-5, pin 3 goes LOW, selecting

READ DATA ENABLE (RDE) and plac
ing the USART receive register on the
bus to be read.

At the same time, pin 10 of IC-4
brings pin 12 of IC-5 LOW keeping
pin 11 HIGH so the DATA STROBE
(DS) of the USART is disabled. (Why
isn't the ROM selected too? Because
pin 13 of IC-4 is HIGH.) If R/W were
LOW, pin 1 of IC-5 would be LOW
and RDE would be disabled while pin
12 of IC-5 would be HIGH and DS
would be enabled.

70

Figure 1. 1/0 Device Block Diagram

DATA

ADDRESS

2K
ROM
(2716) DATA

SERIAL 1/0

USART
(See Text)

DATA STROBE

RECEIVE DATA ENABLE
,,
u

0

u

EX T ERNAL RESET "'
X

DSXX-DFXX

D1XX

R/W

RST

Device Select Reset

SELECT
LOGIC

So that's how the select logic
works. The only new signal we have

is RST which comes from the PBI bus

to reset the USART whenever the
computer is reset. We send the buf

fered signal back out as DEVICE
RESET (DRST) to reset the device
enable latch. We'll see how that works

in the final article.
In the meantime, you might want

to go about scrounging parts. The cir
cuits can be built using wire-wrap
boards if you want. I prototyped on
a perforated bread board and it
worked fine. Leave room for another
half dozen 14 pin gate IC's, a 50 pin
ribbon cable header, a 9 pin D-type
connector (for 1/0), a 5V power con
nector, and a Little extra for any
enhancements you might want.

Next month we'll wrap things up
with the address decoding logic, soft-

BAUD RATE
GENERATOR

(See Text)

ware drivers, and some suggestions

for your own enhancements. See you
then!

Former Atari Engineer Earl Rice was

project leader for the planned top-of

the-line 1450XL computer.

PARTS LIST:

IC-1 Baud Rate Radio Shack

Generator Cat. No.

276-1795

IC-2 USART Radio Shack

Cat. No.

276-1794

IC-3 EPROM 2716-1 (350ns

or faster)

IC-4 Quad 74HCT02

2-input NOR

IC-5 Quad 74HCTOO

2-input NAND

CRYSTAL 5.066MHz

ANTIC, The Atari Resource

the tool box

PIN FUNCTIONS

PIN NAME (SYMBOL)

1 V cc Power Supply (V cc)

2
3 Ground (VG1)
4 Received Date Enable (RDE)

5-12 Received Data Bits (RD8-RD1)

13 Parity Error (PE)

14 Framing Error (FE)
15 Over-Run (OR)

16 Status Word Enable (SWE)

17 Receiver Clock (RCP)
18 Reset Data Available (RDAV)

19 Data Available (DAV)

20 Serial Input (SI)

21 External Reset (XR)

22 Transmitter Buffer Empty (TBMT)

23 Data Strobe (DS)

24 End of Character (EOC)

25 Serial Output (SO)

26-33 Data Bit Inputs (DB1-DB8)
34 Control Strobe (CS)

35 No Parity (NP)

36 Number of Stop Bits (TSB)

Figure 3. UART Pin Functions

FUNCTION

+SY Supply
Not connected
Ground
A logic "O" on the receiver enable line places the received onto the output lines.
These are the B data output lines. Received characters are right justified: the LSB always
appears on RD1. These lines have tristate outputs, i.e., they have the normal TIL output
characteristics when RDE is "O" and a high impedance state when RDE is "1 ". Thus, the
data output lines can be bus structure oriented.
This line goes to a logic "1" if the received character parity does not agree with the
selected parity. Tri-state.
This line goes to a logic "1" if the received character has no valid stop bit. Tri-state.
This lines goes to a logic "1" if the previously received character is not read (DAV line not
reset) before the present character is transferred to the receiver holding register. Tri-state.
A logic "O" on this line places the status word bits (PE, FE, OR, DAV, TBMT) onto the output
lines. Tri-state.
This line will contain a clock whose frequency is 16 times (16X) the desired receiver baud.
A logic· " O" will reset the DAV line. The DAV F/F is only thing that is reset.
This line goes to a logic "1" when an entire character has been received and transferred
to the receiver holding register. Tristate-Fig. 16
This line accepts the serial bit input stream. A Marking (logic "1 ") to spacing (logic "O")
transition is required for initiation of data reception. Fig. 15, 16.

Resets all registeres except the control bits register. Sets SO, EOC and TBMT to a logic "1 ".
Resets DAV and error flags to "O". Clears input data buffer. Must be tied to logic "O" when
not in use.
The transmitter buffer empty flag goes to a logic "1" when the data bits holding register
may be loaded with another character. Tri-state. See Fig. 9, 11.
A strobe on this line will enter the data bits into the data bits holding register. Initial data
transmission is initiated by the rising edge of DS. Data must be stable during entire strobe.
This line goes to a logic "1" each time a full character is transmitted. It remains at this level
until the start of transmission of the next character. See Fig. 8, 10.
This line will serially, by bit, provide the entire transmitted character. It will remain at a
logic "1" when no data is being transmitted.
There are up to 8 data bit input lines available.

A logic "1" on this lead will enter the control bits (EPS, NB1, NB2, TSB, NP) into the control
bits holding register. This line can be strobed or hard wired to a logic "1" level.
See Fig. 19.
A logic "1" on this lead will eliminate the parity bit from the transmitted and received
character (no PE indication). The stop bit(s) will immediately follow the last data bit. If not
used, this lead must be tied to a logic "0".
This lead will select the number of stop bits, 1 or 2, to be appended immediately after
the parity bit. A logic "O" will insert 1 stop bit and a logic "1" will insert 2 stop bits. The
combined selection of 2 stop bits and 5 bits/character will produce 1½ stop bits.

37-38 Number of Bits/Character (NB2, NB1) These two leads will be internally decoded to select either 5, 6, 7 or B data bits/character.

72

39 Odd/Even Parity Select (EPS)

40 Transmitter Clock (TCP)

NB2 NB1 Bits/Character
0 0 5

0 1 6

1 0 7

1 1 8
The logic level on this pin selects the type of parity which will be appended immediately
after the data bits. It also determines the parity that will be checked by the receiver. A
logic "O" will insert odd parity and a logic "1" will insert even parity.
This line will contain a clock whose frequency is 16 times (16X) the desired transmitter
baud.

continued on page 76

ANTIC, The Atari Resource

I the tool box I

The drivers in Listing 1 were written using MAC/65

(Optimized Systems Software). The source code will also
assemble using the Atari Assembler Editor cartridge.

The drivers are thoroughly commented so it should be

easy for you to see how they work. Notice that we reset
the CRITIC flag at the beginning of each driver routine.

The Generic Handler sets it in advance in case a parallel
device is extremely time critical.

Forgetting to reset CRITIC defeats some OS functions
such as software counter timers and key repeat among
others. The rest of the code is very straightforward. Many

Figure 4. Adding An Interrupt Register

B
FIG. 3

FIG. 1

IRQ{

IROJ

D1FF1

R/W

04...,.§

52

thanks to Dave Menconi, formerly of Atari, for the easy

to-follow listing.
Using these basic ideas with some ingenuity, you should

be able to design your own parallel devices for your 800XL
or 600XL computer. If you dream up an interesting pro

ject , the editors at Antic would like to hear about it.

Earl Rice headed users' group support and was an
engineering project leader for Atari. �

Listing on page 78

17 3
D7

15 5

13
0

11 I u 9
N T

8 p p
u u

12
T

6 14

4 16

2 18 DO
E1 E2

19

ANTIC, The Atari Resource

! the toolbox j

PARALLEL BUS

REVEALED Articleonpage49

LISTING 1
1.0' ; Parallel oevice Handler E�aMpJe

20 BY Earl Rice

30

40

ANTIC Ha9azine

50 ;CASH,,UD:11VFILE -OBJ) because the o

bj code is .put

60 ;where there is no RAH available .

70 .OPT OBJ

80 EOUATES

90 PDUMSK = S0247 ;par-a11e1 device

Mask (indicates which are

0:100 PDIMSK = S0249 ;Parallel inter-r-u

78 * ANTIC SOFTWARE LIBRARY

Pt Mask (not used in this

01.:10 GPDUU = SE48F ;Gener-ic Par-a11e1

Device vector

01.20

01.30 HATABS = S031.A ;Device handler- t

able

01.40 CRITIC = S42 ;Critical code se

ction F1a9

0:150 ;

01.60 DEUNAH = 'T ;Device naMe, E -G

T For ''Telephone" .

01.70 HUGET = SD1.00 ;Har-dwar-e GET re9

APRIL 1985

ister

01.80 HWPUT = SD1.00

is"ter .

;Hardware PUT reg

01.90 HWRSET = SD1.01. ;Hardware reset C

clears get register)

0200 HWSTAT = $01.01. ;Hardware STATUS

$0800

register.

021.0

0220

0230

�240

CkSU ...

Ro"' vector tab}e

-WORD O ;optional ROM Che

0250 -BYTE 0 ;Optional Revisio

n nu,..ber

0260 . BYTE $80 ;Mandator!,/ ID nu"'

ber

0270 .BYTE 0 ;optional Nal'le or

T!.IPe

0280 JMP NONEED ;Lo-level IO vect

or, which we don't need

0290 JMP NONEEO ;IRO handler vect

or, which we don•t need.

0300 -BYTE $9:1 ;Mandator!.I IO nu"'

ber

03:10

0320

. BYTE OEVNAM ;Device na"'e

.WORD NONEED-1 ;open vector,

which we �on•t need.

0330 .WORD NONEED-1 ;CLOSE vector,

which we don•t need.

0340 .WORD GETBYT-1 ;GET BYTE vect

or.

0350

or .

0360

ctor.

0370

r, Wh iCh

0380

.WORD PUTBYT-1 ;PUT BYTE vect

.WORD GETSTA-1 ;GET STATUS ve

. WORD NONEED-1 ;SPECIAL vecto

we don't need.

JMP INIT ;INIT vector at P

ower

0390

up or reset.

. B'ITE 0 ;NOT USED-

0400

041.0 ;CODE STARTS HERE

0420

0430 :Initialize device and device han

dler

0440 INIT

0450 LOA PDVMSK ;Get enabled devi

ce flags

0460 ORA st1. ;Set bit 0-

0470 STA POVMSK ;& replace.

0480 :Note: if device used interrupts

we would set bit 0 of

0490 ;

0500 ;Put device nal'le in Handler table

HATABS

051.0 LOX st0

0520 TOP of 1 OOP

0530 SEARCH

0540

table

0550

space.

0560

0570

0580

0590

0600

061.0

C, • device

0620

0630

LOA HATABS,X :Get a b!,lte fro"'

BEO FNDIT ;O? Then we Found

INX

INX

INX

CPX

BCC

RTS

not

SS36

SEARCH

;Length of HATABS

;Still lOOking

;No rooM in HATAB

initialized·

we found a spot.

0640 FNDIT

0650 LOA stOEUNAM ;Get device naMe .

0660 STA HATABS,X ;Put it in blank

spot.

0670 INH

APRIL 1985

0680

f vector.

0690

LOA uGPOVV&SFF :Get lo b!,lte o

LOA UGPOVV/$01.00 ;Get hi byte

of vector.

0700 STA HATABS�2,H

071.0 RTS

0720

0730 GET BYTE routine.

0740 GETBYT

0750

,0760

LOA uo

5TA CRITIC

vertical blank.

0770 LOA HWGET

hardware.

0780

0790

led j.t.

STA HWRSET

SEC

0800 RT5

08:10

;Enable deferred

;Get a byte fro"'

;Reset hardware .

;Indicate we hand

0820 PUT B'ITE routine.

0830 PUTB'/T

0840

0850

LOH uo

STX CRITIC

vertical blank .

0860 �TA HWPUT

ware.

0870 SEC

RTS

;Enable deferred

;put b!.lte to hard

;Indicate we hand

I ed it.

0880

0890

0900 GET STATU� routine.

0910 GETSTA

0920 LOA u0

0930 STA CRITIC

vertical blank .

0940 LOA HWSTAT

0950

led it.

0960

0970

SEC

RTS

;Enable deferred

;Get HW status.

;Indicate we hand

0980 Do nothing routine.

0990 NONEED

1.000

led it.

SEC

1.01.0 RTS

1020

1030

:1040 .END

;Indicate we hand

ANTIC SOFTWARE LIBRARY * 79

	Antic_Vol_3_No_9
	A1.pdf
	A2
	A3

	Antic_Vol_3_No_10
	A1.pdf
	A2
	A3
	A4

	Antic_Vol_3_No_11
	A1.pdf
	A2

	Antic_Vol_3_No_12
	A01
	A0.pdf
	A1
	A2
	A3

