0% nded B L i el B 0 L bt o Boudodd e adld
‘ «*~@Secs- 00088080 v
. "..’.U.’.Ol."!..‘

&

b 3 =
T AR

- Qe0°S e eeRa
200040=g0 @9
aBogoac0agd
o ; > .
e 9% osvoI® e L
280008000000 20080! .tr.o‘o.
VG-® 200800000800 e jegecs e Ve
-a0.q000 0000°8%0' Jesogassesde
S, 24,% = S A o802 088 8@ bes 18888 a0t 9P 6

(VYRR 1Y 000 ROReDS
e 2.20WNeeS - HNO® 192,088 0000
cgc0® o 080" Wt @ 8] eR0

PARALLEL

'“ |

L

|\ aaes e

/AR

o
s
]
.
i
L
&
¢
s
’
’ 0
®

%

®s

eos s RLYL NSO Q050

®eevves

eqremee

R S R B S

e

100,000 bytes per second

Part one of a four-part series

by EARL RICE

Until now, the Parallel Bus Interface
has been one of the big mysteries of
Atari XL computers. This important
Antic series—by one of Atari’s
Jormer top technical executives—
will at last provide all the informa-
tion necessary for tapping the power
of this 100,000 byte per second
connection.

f you own an Atari 600XL or

800XL, you’ve probably noticed

a little plastic cover on the back.

Above that cover are the words
“PARALLEL BUS.” Until now, this port
has only been used for memory ex-
pansion cartridges.

Then last June at the Consumer
Electronics Show, the Atari company
finally released full specifications for
the Parallel Bus Interface (PBI). This
series of articles is based on that
information.

In the next few issues of Antic,
we'll explain how the parallel bus
works and how you can use it with
your own projects.

IMPORTANCE OF THE PBI

The parallel bus interface runs at the
same speed as the 6502 micro-
processor—and it can transfer infor-
mation more than 40 times faster
than the serial connector.

The serial connector can transfer
no more than 2400 bytes per second.
The parallel bus can easily transfer
100,000 bytes or more per second,
depending on software execution
speed. This speed allows you to
design controllers for hard disks and
other high-speed devices.

WHAT THE PBI IS

Basically, the parallel bus connector
is an extension of the 6502 data, ad-
dress, and control signals. These
signals aren’t buffered, and can drive
only a very limited electrical load. Un-
modified, there isn’t very much you
can do with the PBI. When used with

appropriate software and hardware,
however, the PBI becomes an ex-
tremely powerful extension of your
computer.

Fortunately, the PBI's design is easy
to understand. Additionally, most of
the software you'll need is already in
the Operating System. This code,
called the Generic Parallel Device
Handler, resides at location 58511
(BE48F), just waiting to talk to your
high-speed devices. All you have to do
is write the low-level hardware driver
software and combine it with your
hardware.

But first you need to see how the
PBI works.

A parallel device (Figure 1) is essen-
tially a circuit board containing five
key elements:

° A ROM chip containing both the
low-level driver software and a
Device Handler Table.

® Any RAM required for on-board
buffers.

® Some address-decoding logic.

® A hardware-select register.

e The functional circuitry itself.
(Perhaps an I/O device such as a
universal asynchronous receiver/
transmitter (UART) to drive a
modem, or a parallel interface
adapter (PIA) to drive a printer.)

All device registers, ROM, and RAM
are mapped into your computer’s
memory space as shown in the
simplified memory map (Figure 2).

The PBI's ROM space is mapped in-
to the same area as the OS conversion
routines from ASCII to Floating Point.
The computer’s memory manage-
ment IC switches out the OS ROM
when an external device is selected,
and switches back in when it’s done.
The catch is that your external device
can’t use the floating point software
in the OS. It also can’t use any func-
tion of the OS or application software

continued on next page

45

(like BASIC) that uses floating point
routines.

Since most external devices are
essentially 1/0O peripherals, these
restrictions should not create many
programming problems.

The first 26 bytes of ROM contain
a data table (Figure 3). This is a
handler table which has the same for-
mat as the other OS vector tables.
Note that some of the data is optional.
The required data consists of ID bytes
used by the Generic Handler to
validate the presence of a parallel
device, and JUMP vectors to device
functions.

During a coldstart, just before at-

tempting to initialize a cartridge, the
OS will poll for parallel devices. If the
ID bytes are correct, the OS will ex-
ecute the JMP to the INIT routine at
55321 ($D819) through 55323
($D81B). This routine must put the
address of the Generic Handler
(58511, or $E48F) into the OS handler
table (HATABS) along with the device
name (T:, for example).

That done, your routine sets its
select bit in the Device Mask, per-
forms any device-specific initializa-
tions and ends with an RTS
instruction.

That’sreally all it takes to let the OS
“talk” to your device. Of course, there

are the low-level device drivers to
consider, but we’ll examine them in
a later article. For now, remember that
the OS simply needs to know that
your device exists (have its bit set in
the Device Mask) and to have the
Generic Handler’s address in HATABS
(Figure 4).

The OS can handle up to eight
devices on the PBI. The OS selects a
device by setting the appropriate bit
in the Hardware Select register,
located at 53759 ($DIFF). BIT 0
selects DEVICE 0, BIT 1 selects
DEVICE 1, and so on.

Just like the other registers in the
computer, this one has ashadow loca-

46

ANTIC, The ATARI Resource

tion. The computer uses shadow
registers to update the values in its
hardware registers. These values are
updated 30 times per second. The
Hardware Select register’s shadow
location is at 583 (80247).

SELECTING DEVICES

Before selecting a device, the OS looks
at the Device Mask (location 583,
$0247) to see if such a device really
exists. Recall that this was the bit set
by the initialization routine.

Parameters are passed between the
OS and the device using the A, X and
Y registers plus the Page Zero I/O Con-
trol Block (IOCB).

The carry flag tells the OS whether
or not the device performed its re-
quested function. The device sets the
flag when it has performed its func-
tion. Otherwise, the carry flag is left
RESET (0).

The A register passes a data byte, the
X register contains the index to the
originating device’s IOCB, and the Y
register contains a Device Status byte.
This is the same as any other Central
1/0 (CIO) operation.

By the way, this is a good place to
mention that Atari’'s Technical
Reference Notes (C016555 Rev. A) are
worth their weight in system errors.
The basic operation of CIO, IOCB’s,
Device Status codes and the like are

all presented concisely. If you are
continued on page 75

January 1985

47

THE PARALLEL BUS REVEALED
continued from page 47

serious about writing professional-
level software or designing any kind
of hardware for the Atari computer,
this manual is a must. As we go along,
I'll briefly explain the concepts you
need for these articles, but these ex-
planations are not offered as a substi-
tute for the Tech Reference Notes.

SUMMING UP

So far we've learned: The OS contains
a Generic Handler for parallel devices.
It selects one of up to eight devices

through a hardware register and keeps
track of it through a shadow register.
The parallel device has a ROM con-
taining low-level driver vectors (and,
perhaps, the drivers themselves) and
an INIT routine. During coldstart, the
OS will run the INIT routine and the
device will declare its existence by
writing its bit into the Device Mask
and putting its name, along with the
Generic Handler’s address into
HATABS. In operation, the device and
the OS communicate through the
6502’s A, X, and Y registers plus the
Page Zero IOCB. The parallel device
cannot use OS Floating Point routines

because the device’s ROM is
mapped into those same locations.

Not too hard, huh? Next month
we'll look at hardware requirements,
and after that, we’ll work up an ex-
ample and look at interrupts. In the
meantime, try to resist the urge to tear
off that little cover. We'll explain how
to do it safely in the next Antic.

Earl Rice beld a number of bigh-level
technical positions at Atari, in-
cluding bead of users group support.
His last post there was project
leader of the projected top-of-ti
HEBNKL computer:

January 1985

75

the toolbox

PARALLEL

For the first time, advanced users of
the Atari 800XL and 600XL learn
bow it's possible to connect
peripherals to the fast, powerful
Parallel Bus Interface. Part 2 of a
4-part series.

Last month we looked at the general
operation of the Parallel Bus Interface
(PBI) emphasizing software concepts.
This month, we'll look at the hard-
ware concepts involved in making an
external device work via the parallel
bus.

Figure | shows the basic re-
quirements for a simple serial 1/O
function such as an RS-232 board.
The serial I/O device can be an inte-
grated circuit that looks like a set of
registers to the computer. The decode
logic selects the device when the
assigned PBI addresses are presented
on the address bus.

Beyond that, the computer needs
to be able to read and write data to
the device and respond to its requests
for service. That's what the Read/
Write and Interrupt Request lines are
for.

When the computer wants to talk
to a parallel bus peripheral, it enables
the decode logic with a signal called
External Enable. The decode logic
decides whether the address on the
bus is for the device or for the 2K
ROM.

If it's for theROM, the decode logic
returns a Math Pack Disable signal to
the computer so that internal ROM
won't contend with the 2K ROM for
the data bus.

Figure 2 shows the approximate
timing of the External Enable
(EXTENB) and Math Pack Disable
(MPD) signals.

Figure 3 is a more detailed
schematic of the hardware example.
This is still not the complete design,
but it serves to illustrate the concepts
some more.

The decode logic does several
things:
® Decodes the 8D8XX—8DFXX

block to enable the 2K ROM.
® Decodes the DIXX block for

device registers.
® Decodes the address $XXFF so
the computer can select the

Device Enable latch at $DIFE

This latch represents the select

bit in the Device Select register

(DEVSEL).

In Figure 3, the latch is tied to the
data 0 line (for device 0). But it could
be tied to another line to make the
device respond to a different ID num-
ber—such as bit 3 for device 3. For
simplicity, the latch is a write-only bit.
When we expand to a full design,
we'll see how to make a readable
register. We would need to do that to
make the peripheral available to an in-
terrupt service routine.

The Device Enable latch must be set
to allow the computer to address the
2K ROM or the device registers. Its
output is also gated with the 2K ROM
select line to send the MPD signal to
the computer. The Device Enable
latch is set by writing a 1 to $DIFE
It is reset by writing a 0 to $DIFE

ES-

‘..
®
L 2 .
P

Vood X]
[J

—‘N
o
!

3

Earl Rice was bead of users group
support at Atari before moving on ﬁ
to be project leader of the now-
cancelled 1450XL computer.

continued on page 70

68

ANTIC, The Atari Resource

{ the toolbox |

BUS
REVEALED

100,000 bytes per second -

Part Il of a four part series
by EARL RICE

-

-'the to_olbox

SUMMARY

The basic concept isn’'t hard. The
external hardware is enabled by
EXTENB. It must decode the 2K ROM
space, device registers, and Device
Select register. When the 2K ROM is
selected, it must return a Math Pack
Disable signal to the computer. If the
device is interrupt driven, it must
supply an Interrupt Request(IRQ) to
let the computer know it wants to be
serviced. In that event it will also need
to supply an IRQ ID number to the
computer.

Simple? Sure is. . .At least at the
conceptual level. It gets a little more
involved when we design the decoder
and have to deal with timing. We'll do
that next month. In the meantime,
here’s some additional information to
help you understand the diagrams:

READING THE DIAGRAMS

Some of the signal names in Figure
3 have a bar over them. That means
the signal’s active state is low (binary
0). Thelittle circles on the signal lines
next to some of the symbols mean the
same thing. A dot at the intersection
of two lines means they are con-

nected. If they cross without a dot,
they aren’t connected. The wide
arrows indicate multiple signal lines.
The numbers inside the arrows tell
you which signals are involved. For
example, the arrow with A0—All
means the address lines for address bit
0 through address bit 11 all go to the
2K ROM. Only address bits AO—A7
go to the 3XXFF decoder and the
device registers, however.

Figure 4 shows the pin numbers for

the PBIsignals. It also shows how the
pins are numbered on the printed cir-
cuit connector at the back of your
800XL computer. Imagine you are
lookinginto the open connectorslot.

CAUTION: Unplug your computer
before removing the cover over the
slot. Be very careful not to short the
connector pins. Before touching a
connector, be sure to discharge any
static charge you may have built up
by touching a grounded conducting

70

ANTIC, The Atari Resource

1 the toolbox

RQ ——m—32—
e
MPD ‘__‘3__.{__;__“
EXTEND =4
DRXX
DEXX
DIXX

D2-D7

A

AB-AT B

LATCH

o Figure 3,_
Simplified Serial Interface Schematic

object (such as a cold water pipe).
STATIC CHARGES CAN DESTROY
INTEGRATED CIRCUITS! BE
CAREFUL!

Next month, we'll look at a serious
design for a sort of baby 850 Inter-
face—a serial I/O device useable for
driving modems and such.

PC.Connector pin4dg

Pin50

{E5 Lo 5 Vo L S B 58 U A 5 s Mt S5 GO o 150 5o S 15 o S S0 St Do 1055 2% DA Ml WAk 18 24 1t K03 B Bl 1 DA 18 10n0 1
1rgiids :6'{7{82091 202354050697 95 46353440 3040 31 38D 4344133 V20 4T 4B S0 1045 10 06 303?49{
T |IT"1°=1|rlsl)rl;lllil|illllli!||li
2285833888 R zg 2 ¢ o502
Y i —5 2 WE OGO
ADDRESS LINES DATALINES o« &
(AQ-A15) T {D0-D7)

APD
GND

[}
o
o4
Q

CAS
GHD
GHD

AUDIO I
IXTEN B
EXTSEL

A

e
w
(3

-

Figuré 4,
Parallel Bus Pinout

DEVICE ENABLE

SERIAL /O

February 1985

Al

the toolbox

PARALLEL
BUS REVEALED

Part lll: Building the serial i/0 board

In Part Three of this important four-
part series, we're ready to build a
serial 1/0 board to take advantage
of the 100,000 bytes per second data
transfer speed of the Parallel Bus
Interface on the Atari XL computers.

In the first two parts of this series, we
learned the basic concepts of the Atari
Parallel Bus Interface. This month,
we'll start the actual design of a serial
I/0 device for the PBI. We'll choose
our devices and set up the logic to
allow the computer to talk to the 2K
ROM or the USART that we'll use for
/0. Next month, we’ll design address
decoders and put software into the
ROM to make things work.

Figure 1 is a block diagram of the
devices we’ll work with this month.
Notice that the signals coming into
the select logic are the same ones we
invented on our block diagram last
month. The exception is RST which
comes directly from the PBI connec-
tor. The 2K ROM is a 2716, available
from almost any surplus house. Be
sure to get the 350ns version or it will
be too slow for your computer.

The USART and Baud Rate Gener-
ator are from Radio Shack. See the
parts list for catalog numbers. I picked
this USART because it is readily
available. It is also simple to design
with because it has only four registers

by EARL RICE

to deal with, and all are brought out
to IC pins. That means we can hard-
wire some functions and save writing
unnecessary software. Next month
we'll explain how you can make the
circuit more programmable if you
prefer to.

For this example, however, we'll
hard-wire the control register to give
us 300 baud, 7 data bits, no stop bits
and no parity. Figure 3 is a descrip-
tion of USART pin functions and has
the information you need to change
the data format. Figure 4 and its
associated table show how to change
baud rate. Note that the Baud Rate
Generator has to run at 16 times the
baud rate you want from the USART.

The select logic bears some discus-
sion. Because PBI timing require-
ments are tight, we need to use fast
logic chips to be sure things work. To
make matters worse, the PBI can elec-
trically drive only one low power
TTL load. When we decode ad-
dresses, we'll either need to tie two
gate inputs to some lines and overload
them, or put a low power buffer on
the line and add an extra gate delay
to our circuit. Neither alternative is
very attractive.

Fortunately, there is a logic family
available that combines the loading
characteristics of CMOS with the
speed of Schottky TTL. This combin-
ation of high speed with virtually no
DC load on the PBI lines is just what

we are looking for. The logic family
is the 74HCTXX series. These are the
parts to use here. They are exactly
function and pin compatible with
TTL.

Be sure to get 74HCT parts and not
74HC parts. The HCT series is a little
scarce on the hobby market, but they
are available. I got mine at JDR
Microdevices in San Jose, California.

Figure 2 is a schematic diagram of
our serial I/O device. Notice that the
address lines to the 2716 ROM are left
off. This is to avoid clutter. We'll put
them in next month when we do ad-
dress decoding. IC’s 4 and 5, the
NAND and NOR gates, are the select
logic.

The 2K ROM is selected when the
signal from the DEVICE ENABLE
LLATCH is LOW AND D8XX-DFXX is
LOW. Follow the path through the
two NOR gates. You'll notice that the
second one is used as an inverter.
LOWs at both pins 4 and 6 produce
a LOW at pin 13, giving CHIP SELECT
(CS) to the ROM.

This doesn’t allow the ROM to be
read, however, because its POWER
DOWN (PD) line has to be brought
LOW to enable the ROM outputs. The
R/W signal does that every READ
cycle. When it brings pin 9 of IC-4 HI,
pin 10 goes LOW, enabling the ROM
outputs. When both CS and PD are
LOW, the ROM is on the bus.

continued on next page

March 1985

69

the toolbox

We use R/W for the PD signal
because its state is set at the beginning
of the 6502 machine cycle, and the
PD input takes about 250ns to work.
If we waited for address decoding, a
slow ROM might not come on quick-
ly enough. CS operates in less than
30ns, so there’s plenty of time avail-
able to wait for decoding and device
enable to happen.

The USART is set up to operate as
a single read or write register. Any ad-
dress from $D100 to $D1FF will en-
able the USART. This wouldn’t do at
all if we wanted to program its con-
trol functions or read its status register.
But we've hard-wired those functions
for our example, so it really doesn’t
matter. Besides, it saves parts cost.

Next month we’ll deal with
embellishments. For now, writing to
any address in the $D1XX range puts
a character into the transmit register
and the USART will send it. Reading
any address in that range reads the last
character reccived by the USART. The
DS1-DS8 pins go to the transmit
register, and the RD1-RD8 pins go to
the receive register. We've wired them
together and connected them to the
data bus so the computer can write
and read USART data.

When the signal from the DEVICE
ENABLE LATCH is LOW at pin 3 of
IC-4 AND the $D1XX signal is LOW
at pin 3 of IC-4, its output goes HIGH
and enables the read-write gates from
IC-5. Then if R/W is HIGH at pin 1
of IC-5, pin 3 goes LOW, selecting
READ DATA ENABLE (RDE) and plac-
ing the USART receive register on the
bus to be read.

At the same time, pin 10 of IC-4
brings pin 12 of IC-5 LOW keeping
pin 11 HIGH so the DATA STROBE
(DS) of the USART is disabled. (Why
isn’t the ROM selected too? Because
pin 13 of IC-4 is HIGH.) If R/W were
LOW, pin 1 of IC-5 would be LOW
and RDE would be disabled while pin
12 of IC-5 would be HIGH and DS
would be enabled.

Figure 1. 1/0O Device Block Diagram

DATA STROBE

SERIAL 170

| |

USART
DATA (See Text)

—

RECEIVE DATA ENABLE

EXTERNAL RESET

ADDRESS
2k
ROM
DATA (@716)
DBXX-DFXX
-
DIXX
= = SELECT
R/W LOGIC
RST

Device Select Reset

So thats how the select logic
works. The only new signal we have
is RST which comes from the P BI bus
to reset the USART whenever the
computer is reset. We send the buf-
fered signal back out as DEVICE
RESET (DRST) to reset the device
enable latch. We'll see how that works
in the final article.

In the meantime, you might want
to go about scrounging parts. The cir-
cuits can be built using wire-wrap
boards if you want. I prototyped on
a perforated bread board and it
worked fine. Leave room for another
half dozen 14 pin gate IC’s, a 50 pin
ribbon cable header, a2 9 pin D-type
connector (for 1/0), a 5V power con-
nector, and a little extra for any
enhancements you might want.

Next month we’ll wrap things up
with the address decoding logic, soft-

16X R Clock
16X T Clock

BAUD RATE
GENERATOR
(See Text)

ware drivers, and some suggestions
for your own enhancements. See you
then!

Former Atari Engineer Earl Rice was
project leader for the planned top-of-
the-line 1450XL computer.

PARTS LIST:

IC-1 Baud Rate Radio Shack
Generator Cat. No.
276-1795
1C-2 USART Radio Shack
Cat. No.
276-1794
IC-3 EPROM 2716-1 (350ns
or faster)
IC-4 Quad 74HCTO2
2-input NOR
IC-5 Quad 74HCT00
2-input NAND

CRYSTAL 5.066MHz

70

ANTIC, The Atari Resource

Figure 2. 1/0 Device Schematic

+5V SERIAL
p [V{®)
24| 21 | 12 Qoi er
VCC VPP GND S| SO
33 VCC 1
D
i 17 il gl
39 cs 34
DS7
>D6 16 D6 6| rRD7
31 NP 35
DS6 U
el 1 2 D5 7| RD6 S
o 30 A NB2 | 37
2716 D LS
S 14 @H0) D4 8 o R
RD5 § 4t
>_D3 38 ; D3 9| RD4 =
28| p 3 TSB 36 GND
G D2 il D2 10| RD3
97 GND 3
| DS2
SEll 19 D1 | Y| Rpo -
26 P | 40
DS1
, Do 9 DO 12] rp1
= o RCP | 17
—,— —— 1 21
D8XX-DFXX 18 DS RDE
) R TR
FROM
DEVICE
ENABLE 192
LATCH 11
— 5| 14 1 13 | IC5
s 8
DIXX] 19
»— v (9] O
9
Lo 3
ISR 1| 1C5
RST 4
> 6
5 | 1G5 o
+5V e——
DRST 8 TN
<t —o(15 | 10 C= °
|——e +5V %
O | T o A | R [| S cND
VCC STR RA RB RC RD
e BINIER
[BAUD RATE GENERATOR
5.0688 MHz L I T
CRYSTAL [22i=18
B ST AR TBE o 1€ MIDUGND
1o S e | | S s i

Vero

continued on next page

March 1985

"

the tool box |~

PIN FUNCTIONS

Figure 3. UART Pin Functions

PIN | NAME (SYMBOL) FUNCTION

1| V¢c Power Supply (Vcd +5V Supply

Q Not connected

3 Ground (Vg)) Ground

4 Received Date Enable (RDE) A logic “0" on the receiver enable line places the received onto the output lines.

512 | Received Data Bits (RD8-RD1) These are the 8 data output lines. Received characters are right justified: the LSB always
appears on RD1. These lines have tristate outputs, i.e., they have the normal TTL output
characteristics when RDE is 0" and a high impedance state when RDE is **1"’. Thus, the
data output lines can be bus structure oriented.

13 Parity Error (PE) This line goes to a logic 1" if the received character parity does not agree with the
selected parity. Tri-state.

14 | Framing Error (FE) This line goes to a logic 1" if the received character has no valid stop bit. Tri-state.

15 Over-Run (OR) This lines goes to a logic 1" if the previously received character is not read (DAV line not
reset) before the present character is transferred to the receiver holding register. Tri-state.

16 Status Word Enable (SWE) A logic “0" on this line places the status word bits (PE, FE, OR, DAV, TBMT) onto the output
lines. Tri-state.

17 | Receiver Clock (RCP) This line will contain a clock whose frequency is 16 times (16X) the desired receiver baud.

18 | Reset Data Available (RDAV) A logic 0" will reset the DAV line. The DAV F/F is only thing that is reset.

19 | Data Available (DAV) This line goes to a logic *1"* when an entire character has been received and transferred
to the receiver holding register. Tristate-Fig. 16

20 | Serial Input (Sl) This line accepts the serial bitinput stream. A Marking (logic *1"') to spacing (logic *‘0"")
transition is required for initiation of data reception. Fig. 15, 16.

21 External Reset (XR) Resets all registeres except the control bits register. Sets SO, EOC and TBMT to a logic ‘1"
Resets DAV and error flags to ““0". Clears input data buffer. Must be tied to logic “0" when
not in use.

22 | Transmitter Buffer Empty (TBMT) The transmitter buffer empty flag goes to a logic “1'"* when the data bits holding register
may be loaded with another character. Tri-state. See Fig. 9, 11.

23 | Data Strobe (DS) A strobe on this line will enter the data bits into the data bits holding register. Initial data
transmission is initiated by the rising edge of DS. Data must be stable during entire strobe.

24 | End of Character (EOC) This line goes to alogic ‘1" each time a full character is transmitted. It remains at this level
until the start of transmission of the next character. See Fig. 8, 10.

25 Serial Output (SO) This line will serially, by bit, provide the entire transmitted character. It will remain at a
logic “1"" when no data is being transmitted.

26-33 | Data Bit Inputs (DB1-DB8) There are up to 8 data bit input lines available.

34 | Control Strobe (CS) A logic 1" on this lead will enter the control bits (EPS, NB1, NB2, TSB, NP) into the control
bits holding register. Thisline can be strobed or hard wired to a logic *“1*' level.
See Fig. 19.

35 No Parity (NP) A logic 1" on this lead will eliminate the parity bit from the transmitted and received
character (no PE indication). The stop bit(s) will immediately follow the last data bit. If not
used, this lead must be tied to a logic ‘0"

36 Number of Stop Bits (TSB) This lead will select the number of stop bits, 1 or 2, to be appended immediately after
the parity bit. A logic “0" will insert 1 stop bit and a logic 1" will insert 2 stop bits. The
combined selection of 2 stop bits and 5 bits/character will produce 1% stop bits.

37-38 | Number of Bits/Character (NB2, NB1) These two leads will be internally decoded to select either 5, 6, 7 or 8 data bits/character.

NB2 NB1 Bits/Character
0 0 5
0 1 6
1 0 7
1 1 8

39 | Odd/Even Parity Select (EPS) The logic level on this pin selects the type of parity which will be appended immediately
after the data bits. It also determines the parity that will be checked by the receiver. A
logic “'0" will insert odd parity and a logic 1" will insert even parity.

40 | Transmitter Clock (TCP) This line will contain a clock whose frequency is 16 times (16X) the desired transmitter
baud.

continued on page 76
72

ANTIC, The Atari Resource

PARALLEL
continued

BUS REVEALED
from page 72

PIN FUNCTIONS

PIN NO. | SIGNAL FUNCTION
1 XTAL/EXT1 Input is either one pin of the crystal package or one polarity of the external input.
9 Vee Positive power supply—normally +5V
S fa This output runs at a frequency selected by the Receiver divisor select data bits.
4-7 Ra, Rg, Re, Rp These inputs, as shown in Table 1, select the receiver output frequency, fg.
8 STR A high level input strobe loads the receiver data (Ra, Rg, R¢, Rp) into the receiver divisor
select register. This input may be strobed or hard-wired to a high level.
9 NC
10 NC
1" GND Ground
12 STT A high level input strobe loads the transmitter data (T, Tg, T, Tp) into the transmitter
divisor select register. This input may be strobed or hard-wired to a high level.
13416 T, Te, Tg, Ta These inputs, as shown in Table 1, select the transmitter output frequency f;
17 fr This output runs at a frequency selected by the Transmitter divisor select data bits.
18 XTAL/EXT2 This input is either the other pin of the crystal package or the other polarity of the
external input.
Figure 4.
REFERENCE FREQUENCY =4.915200MHz REFERENCE FREQUENCY=5.068800MHz
Divisor Desired Desired Actual Actual Divisor Desired Desired Actual Actual
Select Baud Clock | Frequency Baud Frequency Select Baud Clock | Frequency Baud Frequency
DCBA Rate Factor (KHz) Divisor| Rate (KHz) Deviation DCBA Rate Factor (KHz) Divisor| Rate (KHz) Deviation
0000 50.00| 16X 0.80000 (6144 50.00 0.800000 |0.0000% 0000 50.00(16X 0.80000 |6336 50.00| 0.800000 |0.0000%
0001 75.00| 16X 1.20000 | 4096 75.00(1.200000 (0.0000% 0001 75.00] 16X 1.20000 (49224 75.00(1.200000 |0.0000%
0010 110.00| 16X 1.76000 |2793 [109.93 1.758983 [0.0100% 0010 110.00| 16X 1.76000 2880 110.00(1.760000 |0.0000%
0011 134.50| 16X 2.15200 (2984 | 134.50| 2.152000 |0.0000% 0011 134.50| 16X 215200 (2355 134.52| 2.152357 |0.0166%
0100 150.00| 16X 2.40000 (2048 [150.00| 2.400000 |0.0000% 0100 150.00| 16X 2.40000 (2112 [150.00 2.400000 |0.0000%
0101 300.00| 16X 4.80000 (1024 [300.00| 4.800000 |0.0000% 0101 300.00(16X 480000 [1056 [300.00(4.800000 |0.0000%
0110 600.00| 16X 9.60000 | 512 | 600.00| 9.600000 |0.0000% 0110 600.00(16X 9.60000 | 528 | 600.00(9.600000 |0.0000%
0111 | 1200.00| 16X | 19.20000 | 256 | 1200.00| 19.200000 |0.0000% 0111 1200.00(16X | 19.20000 [264 | 1200.00| 19.200000 [0.0000%
1000 | 1800.00| 16X | 28.80000 | 171 | 1796.49| 28.743859 [0.1949% 1000 | 1800.00(16X | 28.80000 [176 | 1800.00| 28.800000 |0.0000%
1001 | 2000.00| 16X | 32.00000 | 154 | 1994.81(31.916883 |0.2697% 1001 | 2000.00| 16X | 32.00000 | 158 | 2005.06| 32.081013 |0.2532%
1010 | 2400.00| 16X | 38.40000 | 128 | 2400.00(32.000000 |0.0000% 1010 | 2400.00| 16X [38.40000 | 132 | 2400.00| 38.400000 [0.0000%
1011 | 3600.00| 16X | 57.60000 85| 3614.11| 57.825882 |0.3921% 1011 | 3600.00(16X | 57.60000 88 | 3600.00| 57.600000 |0.0000%
1100 | 4800.00(16X | 76.80000 64 | 4800.00| 76.800000 |0.0000% 1100 | 4800.00(16X | 76.80000 | 66 | 4800.00| 76.800000 |0.0000%
1101 | 7200.00(16X | 115.20000 43| 7144.19|114.306976 |0.7751% 1101 [7200.00(16X | 115.20000 | 44 | 7200.00|115.200000 {0.0000%
1110 | 9600.00| 16X | 153.60000 32 [9600.00(153.600000 [0.0000% 1110 | 9600.00(16X | 153.60000 33 | 9600.00(153.600000 | 0.0000%
1111 |19200.00| 16X | 307.20000 16 (19200.00 [307.200000 [0.0000% - 1111 [19200.00(16X | 307.20000 16 [19800.00 | 316.800000 |3.1250%

*

76

ANTIC, The Atari Resource

{ the toolbox

PARALLEL BUS
REVEALED

Conclusion of the first-ever PBl usage guide

by EARL RICE

Concludmg the Jour-p
teacbes advanced XL
) powe;ful uli
artzcle includes an ass / /4]

quires MAC/65 or the Ata Assembler Editor. You will
also need access to an EPROM burner. The three earlier
installments ran in tbe]rmumy, February and Marcb
1985 zssues of Antic.

tbat Jor the fzrst tzme

Figure 1. Address Decode and Device Enable
—_— 04

Last month we looked at a design for a serial I/O device
using a readily available USART chip. This month we’ll
design address decoding logic for the device and see how
to add a status register and an interrupt register to it. We'll
also look at some example software for the device ROM.
But first, a little about last month’s design.

This USART design is a simplest case design. Writing
to any address in the $D100-$D1FF range puts a character
into the transmit buffer and it will be sent out the serial

continued on next page

DEVSEL

MPD 2
- <Gk
= il EXTSEL
EXTENB D
15 00
AR e 0 CPU
A L 08
13 J>§ =) 1 e p.
04
12 DBXX-DFXX
xsxx-xrxxa ———ED{_ e
1 . DX DRE
A
10 | = (RO
27 00 b
& Do —
. 4
[y
8 XIXX =
D@ 2
o el
R/W R
3 LY :
A T] &
A e 00 K Q o
o1 i
- o CLR DEVSEL
4 XXFF
0 b %
3 DRST ’2
9 \
L % DIFF
! Ve
49

April 1985

the toolbox

I/O line. Reading any address in the same range gets the
last received character from the receive buffer.

The easiest way to test this arrangement is to tie the
serial input and output lines (USART pins 20 and 25)
together. If you write a character to the transmit buffer
and wait a few milliseconds, you should be able to read
the same character from the receive buffer. All this assumes
that we're decoding addresses and that we have some soft-
ware in ROM, so let’s get on with those details.

ADDRESS DECODER

Figure 1 is a schematic diagram of an address decoder
to provide ROM selection and device register selection.

The output signal $D8XX-$DFXX, combined with the
Device Select signal (DEVSEL), provides the Math Pack
Disable signal (MPD) to disable the floating point ROM
in the CPU so it doesn’t contend with our ROM for the
data bus. We can use the same signal to select our ROM.
This allows us to remove some of the logic from last
month’s circuit. Just remove the wires from IC4 pins 6,
5,4, 13, 12 and 11 and connect MPD to ROM pin 20. (See
last month’s Figure 2).

The signal $DIFF selects the Device Enable Latch. When
a write signal clocks the 74HCT74 latch, the value of the
Data 0 line (DO0) will be stored. Writing 1 to address $D1FF
selects our external device. Writing 0 deselects it. $D1FF
can also be used later to select an interrupt register.

By combining it with DEVSEL and $DI1XX, we get a
Device Register Enable signal (DRE). We'll use this signal
instead of part of the logic in last month’s circuit to make

Figure 2. Even/Odd Register Selection

DRE .

the device registers work. Just remove the wires from IC4
pins 3,2 and 1, and connect DRST to 1C5 pin 13.

The CPU External Enable signal (EXTENB) lets our
device know the computer wants to talk to device registers
(or RAM in a more complex application). That signal is
combined with DEVSEL and $D1XX to make an External
Select signal (EXTSEL) to turn off CPU RAM so as to avoid
bus contention.

DEVICE RESET

The Device Reset signal (DRST) comes from last month’s
circuit and resets the device select latch any time the CPU
generates a RESET signal.

You've probably noticed that this month’s schematics
are a little different from last month’s. Since last month’s
circuit is the basic recipe for our device, we included IC
location assignments and pin numbers.

This month’s article deals with several options you
might or might not use, so we're giving you IC type
numbers and no pin assignments for general logic func-
tions. The number inside or next to a symbol is its type
number. For example, 00 means 74HCT00.

Since all the logic is 74HCT series, we just need to use
the last digits of the type number to identify a part. Also,
be aware that we use both positive and negative names
for some signals. R/W and R/W are complementary signals
and mixing them up won’t work.

It would be nice to have a status register. That way, we
could tell the state of our USART by asking it, rather than
just hoping the byte we gave it got sent, or assuming the

EVEN

A_T > 02
AO;Z

—

» FIG2 PART3 |C5-13

ODD2

[

—p A FIG. 3

50

ANTIC, The Atari Resource

byte we got from it is a good one. The USART does have
a status word available: four bits to read and a reset bit
to write to.

The read bits are three error bits: Over-Run (OR), Fram-
ing Error (FE) and Parity Error (PE), and a Transmit Buffer
Empty bit (TBE). The write bit is a Reset Data Available
bit (RDAV). Last month’s signal name list explains these
bits’s functions.

In order to use this new register, we need to expand
our addressing capability. Figure 2 shows a way to use
the Address 0 line to select even and odd addresses in the
device register space.

STATUS REGISTER

Figure 3 shows an implementation of the status register.
The 74HCT244 shown is a tri-state buffer. This allows us
to read the status bits when we select any odd address
in the device register space. The gate to the USART RDAV
pin resets the Data Available flip-flop when we write
anything to an odd address.

Figure 3. Adding A Status Function

the toolbox

Latch (Figure I). The remaining bits must be tied to 0
(Ground).

Remember that we've designed this circuit to be the only
external device on the parallel bus. If you were to put
several devices on the bus, things would get much more
complex. Designing a multiple board system is beyond
the scope of this article.

But if you're a serious hardware hacker, you can prob-
ably extend what we've done here for more than one func-
tion. You should also realize that the logic in this design
can be streamlined in several places. We aimed for use
of only a few IC types, and haven’t always optimized for
speed or elegance. Sometimes we do things like use a NOR
and an inverter to make an OR gate. Bulky, but workable.

YOUR SOFTWARE

Now for software. The only really awkward thing here
is that you've got to have access to an EPROM program-
mer for 2716’. I used a cranky home-built programmer
a friend put together. Most large users’ groups have at least

D4 ——— Z 15 OR
D3g¢—————— O | = L FE
U
D2 < TN B LT o i
P 4 u S
S ¥ T8 99) gy A
R
DO ~a— U o TRy 16
SWE
Bl E2 RDAV
oDD
1 19
i _\'2
R/W 00
1C4-9 4
PART 3 Z
FIG.2
@A Ol RN
00
IRQ
2 » B
T0 FIG 4

The IRQ line is there in case you want to design in an
Interrupt Register. We're assuming that we want to generate
an interrupt when we get a Data Available signal from the
USART.

Figure 4 uses a 74HCT244 to make an interrupt register.
This allows the OS interrupt handler to poll our Parallel
Bus device to see who made an interrupt request. By put-
ting the IRQ signal on the Data 0 line, we have established
our USART device as Device 0.

Putting the signal on the Data 1 line would make it
Device 1, Data 3 makes it Device 3, etc. Whatever bit you
use here must correspond to the bit you use for the Enable

one member with access to one, so you might try there.

The important part of the ROM is the vector table. You
can put all your device driver routines on disk and load
them as an AUTORUN.SYS file if you want, but the vector
table MUST be in ROM. You can also put your device
drivers in ROM if you want.

For our example, we are only implementing INIT, PUT,
GET, and STATUS. For simplicity, we're making the drivers
contiguous with the ROM vector table to run entirely from
ROM.

continued on next page

April 1985

51

the tool box |

The drivers in Listing 1 were written using MAC/65
(Optimized Systems Software). The source code will also
assemble using the Atari Assembler Editor cartridge.

The drivers are thoroughly commented so it should be
casy for you to see how they work. Notice that we reset
the CRITIC flag at the beginning of each driver routine.
The Generic Handler sets it in advance in case a parallel
device is extremely time critical.

Forgetting to reset CRITIC defeats some OS functions
such as software counter timers and key repeat among
others. The rest of the code is very straightforward. Many

Figure 4. Adding An Interrupt Register

IRQ
5 v,

thanks to Dave Menconi, formerly of Atari, for the easy-
to-follow listing.

Using these basic ideas with some ingenuity, you should
be able to design your own parallel devices for your 800XL
or 600XL computer. If you dream up an interesting pro-
ject, the editors at Antic would like to hear about it.

Earl Rice headed users’ group support and was an
engineering project leader for Atari.

Listing on page 78

17 3
—| ===y
15 3
e [r——
13 4
| Q= =
1l ! U
— N T
8 |0 il
— 7 T —
6 14
H—i —
4 16
2] 18 DO
E1 ED f—

FIG. 3

IRQ 2

04—
DIFFZ

FIG. 1

R/

59

ANTIC, The Atari Resource

[thc toolbox]

PARALLEL BUS
REVEALED.......

LISTING 1
168° : Paraltiel pevice Handier Examprle
20 By Ear1l Rice
30 ANTIC Magazine
40
50 : (ASM, .uD MYFILE .OBJ3 because the o
bji code is put
60 ;where there is NOo RAM available.

70 -0OPT OBJ
80 EQUATES
98 PDVMSK = 50247 ;:Parallel dewice

mask (indicates whiCh are
0166 PDIMSK = 50249 ;Parallel interru

78 %« ANTIC SOFTWARE LIBRARY

PT mask (not used in this

01160 GPDVV = SEA48F :Generic Parallel
Device VYector

0120

0130 HATABS = 35031A ;Device handler t

able

0140 CRITIC = S42 ;Critical code 35e

ction f1ag

0150

0160 DEVNAM = T ;Device name. E.G
T for "*Telephone''.

0178 HWGET = sSDp166 ;Hardware GET reg

APRIL 1985

ister

8186 HWPUT = 35D166 ;Hardware PU7T regs
ister.

81908 HUWRSET = 5D101 ;Hardware reset (

clears get register)

82080 HUSTAT = 5D101 ;Hardware 5TATUS

register.

8210

82206 sD86o

8230 Rom vec tor table

8240 -WORD © ;Optional ROM che

cCksum

82508 -BYTE © ;0optional Revisio

n nNnumber

8260 -BYTE 586 ;Mandatory ID num

ber

82706 -.BYTE O ;O0ptional Name or
Type

0288 JMP NONEED ;Lo-l1level I0 vect

or, which we don*'t need

8299 JMP NONEED ;IRQ nhandler vect

or, which we don't need.

8308 -BYTE 591 ;Mandatory ID num

ber

83190 -BYTE DEVNAM :Device name

83290 -WORD NONEED-1 :0rPen vec tor,

which we don't need.

8330 .HORD NONEED-1 :;CLOSE vector,
which we don°'t need.

8340 .WORD GETBYT-1 :GET BYTE vect

or.

83580 .HORD PUTBYT-1 :PUT BYTE vect

or.

8360 .HORD GETSTA-1 :GET STATUS ve

ctor.

8378 -WORD NONEED-1 ;:5PECIAL vecto

r, which we don't need.

8380 JMP INIT ;INIT vector at p

ower up or reset.

83990 -B¥YTE © ;NOT USED.

8400

8410 :CODE STARTS HERE

8420

8430 'Initialize device and device han

dler

8440 INIT

8450 LDA PDVMSK ;Get enabled devi

ce flags

8460 ORA 11 ;Set bit @.

8470 STA PDUMSK :& replace.

8480 ;Note: if device used interrupts

we would set bit O of

84906

8508 Put device name in Handler table
HATABS

85190 LDX =0

8520 ToP Of looP

8538 SEARCH

8540 LDA HATABS.X :Get a byte from
table

85508 BEQ FNDIT ;87 Then we found
space.

8560 INK

8578 INR

8588 INK

8590 CPXR 836 ;:Length of HATABS
8600 BCC 5SEARCH ;5till l1o0king
8610 RTS ;NO room in HATAB
4 device not initialized’

8620

0630 e found a sSpPoOt.

8640 FNDIT

8650 LDA #DEVNAM :Get device name.
8660 53TA HATABS,H :Put it in blank
spot.

8670 INX

APRIL 1985

8680 LDA BGPDVV&SFF :Get 10 byte o
f vec tor.

086906 LDA GPDVUV.”5010808 :Get hi byte
of vector.

87006 5TA HATABS5+2. X

87106 RTS

87’28

07306 GET BYTE routine.

8740 GETBYT

87506 LDA 120

076806 STA CRITIC ;Enable deferred

vertical blank.

e’’e LDA HUWGET ;Get a byte from
hardware.

08780 STA HUWRSET ;Reset hardware.
8798 5EC ;Indicate we hand
led it.

0800 RTS

081806

88290 PUT BYTE routine.

8836 PUTBYT

8840 LDX 120

8850 5TH CRITIC ;Enable deferred

vertical blank.

8860 3TA HWPUT ;Put byte to hard

ware.

887’0 SEC ;Indicate we hand
l1ed iT.

0886 RTS

889806

89006 GET STATUS routine.

8918 GETSTA

89206 LDA =0

89306 5TA CRITIC ;Enable deferred
vertical blank.

8940 LDA HUWSTAT ;Get HH status.

8958 S5EC ;Indicate we hand
led it.

8960 RTS

0970

0986 Do nothing routine.

09960 NONEED

1060 SEC ;Indicate we hand
led it.

1610 RTS

106206

1630

1040 -END

ANTIC SOFTWARE LIBRARY * 79

	Antic_Vol_3_No_9
	A1.pdf
	A2
	A3

	Antic_Vol_3_No_10
	A1.pdf
	A2
	A3
	A4

	Antic_Vol_3_No_11
	A1.pdf
	A2

	Antic_Vol_3_No_12
	A01
	A0.pdf
	A1
	A2
	A3

